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Theory of a Strip~Line Cavity for Measurement of

Dielectric Constants and Gyromagnetic~

Resonance Line~Widths*

R, A. WALDRONt

SummarfpThe cavity consists of a half-wavelength or wave-
length of strip-line, short-circuited at both ends, and open along the

sides. For measurements of dielectric and magnetic properties of

samples, it has two apparent advantages over the more usual co-

azial line method: the sample is simpler in shape, and it can be in-
serted without dismantling the cavity. Perturbation formulas are ob-

tained for the frequency shift and change of ‘(Q“ on inserting a sam-
ple into a position of zero electric or zero magnetic field. The “ Q“ of
the cavity in the absence of a sample is calculated by a perturbation

method. The limiting sample size for a given accuracy to be obtained

is also discussed.

I. INTRODUCTION

I

N THE RANGE of frequencies from about 100

Mc to about 2000 Mc, the dielectric constants of

materials are usually measured by inserting into a

coaxial line a sample of the material in the form of a

tube, filling the space between the conductors. 1 Great

care is necessary in preparing a sample, for the shape is

complicated and the fit must be very good. This dif-

ficulty is accentuated if the material is available in the

form of a thin sheet from which a number of disks have

to be cut and stacked together. To insert the sample,

the circuit must be broken, and this introduces the

possibility of error because the junction at the break

may not be made in exactly the same way after the

break as before.

To overcome these difficulties, it was suggested2 that

a strip-line resonator, short-circuited at both ends and

open along its sides, be used. Much simpler sample

shapes can then be used, and fewer dimensions need to

be accurately made to specified values. Also, the sample

can be inserted through the open side of the resonator

without otherwise disturbing the apparatus. The author

has made a study of the relevant theory which forms

the subject of the present paper.

By placing a sample in a region of zero magnetic

field and maximum electric field, a measurement of di-

electric constant can be made. For a cavity half a

wavelength long, such a position occurs at the center of

the cavity. Measurements of magnetic properties can

be made by placing the sample in a position of maxi-
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mum magnetic and zero electric field. For al half-wave-

length cavity, this is at the end of the cavity, and the

effect of reflection of the sample in the end wall must

be considered.

The field configuration in the cross section of a strip-

line is very complicated, and the problem cannot be

handled directly in terms of this model. To obtain the

problem in a tractable form, the actual strip-line cross

section must be mapped into a rectangle, two opposite

sides of which correspond to the live strip and one

ground pIane. This parallel-plate model can then be

treated conveniently, and the results obtained for this

can be changed by means of the mapping function into

those proper to the actual strip-line. Thus the mapping

is central to the whole subject of the paper and will be

treated first, in Section II. The possibility of mapping

in this way depends on the fact that we take the strip-

line to be working in its transmission-line mode, in

which both the electric and magnetic fiends are trans-

verse,

The imaginary part of a dielectric constant or

permeability is measured by observing the change of

“Q” on inserting the sample. To ensure that meas-

urable values can be obtained, it is necessary to know

the “Q” of the unperturbed cavity, and this quantity

must be taken into account in designing a cavity. For

this reason, a calculation had been made of the “Q” in

Section II 1, using perturbation theory.

Section IV deals with the frequency shift and change

of “Q” on inserting a dielectric material into a position

of zero magnetic field. This study falls into two parts,

the derivation of a formula for the frequency shift in

terms of the dielectric constant of the sample and the

geometry of the sample and cavity, and an estimate of

the maximum dimensions the sample may have if a

given accuracy is to be achieved.

The substances on which magnetic measurements will

be performed will usually be ferrites, and here the in-

terest is in the diagonal and off-diagonal elements of

the permeability tensor and the gyromagnetic-resonance

line-width. By placing the sample in different positions,

it is possible to measure both elements of the perme-

ability tensor. Only one measurement is necessary to

determine the linewidth.

At the center of the common area o,f two crossed

strip-lines, there will be circular polarizi~tion, and, by

reversing the sense of this, both permeability elements

may be measured on a sample placed at this position;
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this has been suggested by Ogasawara and Shikata.3

The difficulty here, however, is to relate the frequency

shift to the properties; this will be very difficult mathe-

matically—it is not a case of merely extending the

theory given in the present paper—and the problem is

not solved by Ogasawara and Shikata.

II. MAPPING

Fig. 1 shows the cross section of the strip-line. By

virtue of the two planes of symmetry, we need consider

in detail only one quadrant; the others will follow auto-

matically. We are concerned with the electric field dis-

tribution inside the polygon PQRSTP, where P is taken

to be at infinity. The ground planes will, of course, only

be of finite extent, but we assume this extent to be such

that, at the edges the energy density is so small that

the difference between the actual ground planes and

infinite ground planes is negligible.

The mapping is carried out in two stages. First we

shall map the polygon PQRSTP of Fig. 1 onto the first

quadrant of the ~ plane (Fig. 2) in such a way that the

periphery of the polygon in the z plane lies on the real

and imaginary axes in the ~ plane. The second stage is

to map the first quadrant of the ~ plane onto the in-

terior of a rectangle in the Z plane (Fig. 3). The two

transformations are to be carried out in such a way

that the two conducting surfaces are on opposite sides

of the rectangle in Fig. 3, and occupy the whole of each

side. The mapping function we shall use will be doubly

periodic in the Z plane, so that if the plane is imagined

to be filled with a doubly infinite number of rectangles

lying adjacent to one another, the mapping function we

shall use can, by suitably choosing certain arbitrary

z = J) + A{ (/32/a’) F(@l, f?)

constants, be made to map any quadrant of the ~ plane

onto any rectangle in the Z plane. The presence of these

alternative rectangles on either side of the one we are

concerned with means that the electric lines of force in

the Z plane do not go outside the rectangle; they are

straight, parallel to the imaginary axis—we have a

parallel-plate condenser with no edge effects. From our

knowledge of the field distribution in this simple situa-

tion, we can deduce certain facts we will need to know

about the field distribution in the z plane.

The mapping function is

where Z. is a constant to be determined. This is a modi-

fied Schwarz-Christoffel transformation. Eq. (1) takes

different forms for different ranges of values of ~. It will

a N. Ogasawara and Y. Shikata, “ I reproved perrnittivity and
~~mability rneasurernents, ” Microwaties, vol. 1, pp. 20–23; October,
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Fig. 3—The strip-line mapped onto a parallel-plate line.

be sufficient for our purpose to note the various forms

for points on the axes of the ~ plane, corresponding to

the perimeter of the polygon in the z plane.

On the line PQ, (1) becomes

1- (1 – /Y/a’) II(l#J,, a!’, /3)} (2)

where F and II are incomplete elliptic integrals of the

first and third kinds, respectively, and sin & = ~.

At Q,

.i-=o, +1 = 0, and z = jib.

At P,

On the line PT, (1) becomes

where

sin 42 = v’(1 – ~Z)/(1 — ~z~z),

At P,

At T,

~=1, 42=0, and Z=W,

(3)

(4)

(5)

(6)

(7)
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On the line TS, (1) becomes

{
z = w – jA F(?J3, 6’)

a? — o’ ~ J-P’—

(
~ P’)1(8)

~z—l l–a?

where

sin & = <(1 – l/f2)/~1 – ~z), and @’ = <1 – f32.

At T,

f=l, 43 = o, and z = w.

At S,

r = 1/6, +3 = 7r/2,

and

On the line SR, (1) becomes

z = jt + A{ F(@4, p) – (1 – p2/a~)rI(&, p~/a2, B)]

where sin r$k = l/fl~.

At S,

1- = l/P, 44 = 2r/2,

and

z = jt+ x{K(/3)– (1 – fP/a’)II(p2/a’,p)).

At R,

j-=czl, c#14 = O, and z = jt.

On the line RQ, (1) becomes

{

1–/32

z=jb+jh — F(@5, f?’)
~2_l

&2 — /y
— —- rI(&j, 1 – d, ~’)

~2—1 }

(9)

(lo)

(11)

(12)

(13)

(14)

where

1

“n 45 = <1 – l/f’
and

At R, ~=jm, cps=7r/2, and

{

l–pz

z=jb+jk
~ ‘@’)

again f?’ = ~1 — ~z.

~’ – B2
— )II(1 – d, f3’) . (15)

&_l

At Q,

{ = jo, q5s = O, and z = jb. (16)

The constants a, ~, and h can be obtained in terms of

the geometry of the strip-line, i.e., in terms of w, t,and b.

At S,

z = W+.jt. (17)

At R,

z = jt.

Comparing (10) and (17),

{
t= –k ‘(~’)–:::;’

‘(=’”)}

Comparing (12) and (17),

w = k{ K(@) – (1 – ~2/c12)II(f12/a2, ~)}.

Comparing (15) and (18),

()

– B2
b=h~—

~2_l

(18)

(19)

(20)

“@(=’@)+H(l-a2J@’)--1’’21)
It is convenient to deal with t/b and w/b rather than

with tand w themselves. Curves of t/b anti w/b as func-

tions of a, with ~ as a parameter, are given in Figs. 4

and 5. a and ~ are numerical constants, but it is clear

from (21) that X will have the dimensions of b. No ad-

vantage is to be obtained by normalizing b, e.g., with

respect to the free-space wavelength, so we will retain b

as a length. Eq. (21) simplifies to

2ab

d

~2—1

A=— —.

7r ~2 — /32
(22)

B. 1 to Z Mapping

The mapping function is

J

$’ d{
Z= Zo+L —————

, <(1 – p)(l – Ck’p) “
(23)

This is again a modified Schwarz-Christoffel transfor-

mation. As before, this function takes different forms for

different ranges of values of ~. Again, we cmly need con-

sider the periphery of the rectangle in the Z plane.

On the line QP, (23) becomes

Z = K(l/a) + ~ F(OI, l/a) (24)
a

where

sin 01= at.

At Q,

~=o, 01 = O, and Z = K(l/a). (25)

At P,

f = I/a, O, = 7r/2, and Z = K(l/a) [1 + L/a]. (26)

But at P,

Z=O. :. L=–a. (27)

This value of L will be taken in future, so that L will

not appear again explicitly.
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Fig. 4—t/b as a function of a, with B as a parameter. B is the
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Fig. 5—w/b as a function of a, with L?as a parameter. (3 is the
sine of the angle given.

On the line PT, using also (27), (23) becomes

z = jF(02, 7) (28)

where

d

&?(2 _ 1

sin 02 = and y = <1 – l/a2,
~’(a’ – 1)

At P,

{ = 1/0!, 02 = o, and Z = O.

At T,

f=l, Oz = 7/2, and Z = jK(T).

On the line TR, using also (27), (23) becomes

Z = jK(Y) + K(l/a) – F(/3,, l/a)

where

sin 03 = l/~.

At T,

J=l, Os = T/2, and Z = jK(Y).

At S,

r = 1/8, and

Z = jK(Y) + K(l/a) – F(Sin–l @, I/a).

(29)

(30)

(31)

(32)

(33)

At R,

~=w, & = O, and Z = jK(Y) + K(l/a). (34)

On the line RQ, using also (27), (23) becomes

Z = K(l/a) + jF(&, Y) (35)

where

At R,

~ = j~, 194= 7r/2, and Z = K(l/a) + jK(T). (36)

At Q,

[ = jo, 9, = O, and Z = K(l/a). (37)

C. Form of the Field Near RQ

We shall be particularly interested in the lines of force

near RQ, because it is into this region that the sample

will be introduced, First, we note that for sufficiently

small O and u

F(O, k) + O + k’03/6, (38)

~(o, x, k) + o + (2x2 + k2)@3/6, (39)

Sin–l u + u + z@/6. (40)

Now consider in Fig. 3 the line A13 drawn parallel to

QR, so that QA /QP = x. This line coincides with a

line of electric force, and we wish to know where the

points A and B will lie in the z plane. At A, we have,

from the values given in Section II-B for Z at P and Q,

z = K(l/a)[l – ~]

and from (24), using (27) and (38),

Z s K(l/a) – (0, + 013/6a’).

Comparing these,

(?I ~ zK(l/a) [1 – x2&/6a’]

where K means K(l/a). Now, on Sin O] = a~, and we

write fA for the value of ~ for the point A. Hence

~~ S: Sin ~Kx(l – K2x2/6a2) }. (41)
c1

Similarly, at B, using (31) and (38),

1
{B=

Sin ~K#(l – K2#2/6CY2) } -
(42)

Eqs. (41) and (42) give the points in the ~ plane onto

which A and B map. We do not need to know the de-

tailed form of the curve joining them into which the

line AB of Fig. 3 maps.

We are now going to map the points A and B onto the

z plane. For the point A, using (40), we write

+, g Sin-l {A g CA + $~3/6
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and using (38) and (39), (2) then becomes

ZA ~jb + ~{~~ + (1 -1- 2Y2 – 132)rA8/6].

Using (41) and expanding the sine in terms of the angle,

this becomes

zA G jb

Similarly,

zB ~ jt

Eqs. (43) and

positions of A

h~Kx

{

K2X2

+— l–
}

~ (a’/@’ – 1) . (44)
a!’

(44) are the required expressions for the

and B in the z plane. They will be dis-

cussed further in Section IV. -

III. Q OF THE CAVITY

The “Q” can be calculated by the use of perturbation

theory. For a cavity with perfectly conducting wails

filled with a Iossless dielectric (e.g., vacuum), the “Q”

is infinite, and l/Q= O. The change in l/Q on perturb-

ing this ideal cavity to the actual cavity gives the “Q”

of the cavity. It will be legitimate to assume the dielec-

tric filling, which will be air, to be lossless. The finite

value of the “ Q“ will then be due to the replacement of

perfectly conducting walls by metal walls.

The perturbation formula is4

~+-~
w 2Qo

N
.—

D

SD ~
(E,. Do– Eo. D1)–(H,.B,–H,.B,) }dv

VI——

Sss~
(45)

Eo. Do–Ho. Bo}dv
v~

where EO, DO, Ho, and BO are the fields and inductions

in the unperturbed state and El, Dl, HI, and B1 are

additional fields and inductions which, added to Eo, DO,

Ho, and Bo, give the fields and inductions in the per-

turbed cavity. By virtue of the symmetry of the figure

in the z plane, we need consider only the cavity consist-

ing of the polygon PQRSTP with length 10perpendicu-

lar to this polygon. The interior of this is the volume VO.

The volume VI is the whole of the volume over which

perfect conductor is replaced by metal. It will be con-

venient to perform the calculation for the mapped form

of the cavity in Fig. 3 instead of the more complicated

form of Fig. 1.

In VI, EO = O and BO = O. The numerator of (45) there-

fore reduces to

N= Sss{El, DO+ Ho. B,~dV (46)
VI

4 R. A. Waldron, “Perturbation Theory of Resonant Cavities, ”
IEE Monograph, No. 373E; April, 1960.

and there will be two parts to this: N1 due to the length

of the stripline and Na due to the short-circuiting plates.

For JVl, we note that, at the metallic surface, Dol is

equal to DOO= @OO, and that DO] is al~sc) equal to

Coe(El+ Eel), where the second subscripts O and 1 refer

to values in V. and 1~1, respectively. EO1 is zero, Thus

in VI, El. DO1 = eOE002e/. Also, at the metallic surface

B1 =MOHOO, since a medium of permeability IO has been

replaced by a medium of permeability 1. Hence

E1. DO + HO. BI = ~ E002 + ~oHoo~ (47)
6

at the surface. Here c is the dielectric constant of the

metal, which is very large and imaginary. Since CO,EOOZ

= MoHoo2, this makes the first term on the right-hand

side very much less than the second. Thus the term in

E002 may be dropped.

For the term Ho. BI in VI, we have Ho constant over

the transverse plane and equal to the value in I’o, be-

cause, in the perfect conductor, Hol extends to infinity.

However, B, decays exponentially in the metal because

of the skin effect. The value of WOHOO?in (47) must there-

fore be multiplied by the factor exp ~ --(1 +Jy/ti ],

where y is the distance measured upwards from TR or

downwards from PQ in Fig. 3, and 6 is the skin depth.

We have now evaluated the integrand of (46) for NI.

Performing the integration, we obtain

N1 = (1 – j)6MOHO210-PQ (48)

where 10 is the length of the cavity and HOO is the RMS

value of the magnetic field averaged, that is, over the

cavity length, because the field varies cosinusoidally

with length,

For the contribution from the ends, we note that at

the ends DO= EO = O. The contribution is again due to

the magnetic field parallel to the surface, so that

Nz 4. PQ-QR 2.QR
— .— .

x– 2. PQ.10 10
(49)

The factor 4 in the numerator arises as the product of

two factors 2, one for the two ends and one because at

the ends of the cavity HO has its peak value, whereas,

along the length, we took the RMS value. The factor

QR/lo is the ratio of the area of the end-plate to that of

one of the lengthwise conducting planes in Fig. 3. The

factor 2 in the denominator exists because there are two

such planes in which dissipation is taking place.

From (48) and (49),

N = (1 – j)@0270210. PQ[l + 2QR/Jo]. (50)

For the denominator of (45), we note that

Sss
EO DodV = – fssHO. BOdV

70 v~

and hence

D=–2 SSSHO. BodV = – 2~oIZ02V,
VQ
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i.e.,
D = – 2P OHO’. PQ. QR.10 (51)

where again HO is the RMS field. From (50) and (51),

we obtain

N
—. ~+&= ‘~2;:)6 [1+ 2QR/toI,
Dco

... Q, = ‘R
8[1 + 2QR/lo] “

Mapping back onto the z plane, we find that 8 maps to 8

and QR to b — t. Writing also

d

x,
6=1 —

r 120U

where ho is the free-space wavelength and u is the con-

ductivity of the metal, we finally obtain

Q, =
r(b — t)<120a

VOo{ 1 + 2(b – t)/lo)“
(52)

For example, if u =6. 107, which is about the value for

silver, b = 1/4”, t = 1/16”, AO = 1 meter, and JO= 50 cm,

QO is found to be 1220.

IV. MEASUREMENT OF DIELECTRIC CONSTANT

For this purpose, the sample is to be taken as a small

block of height b –t, its horizontal surfaces fitting flush

with the strip and the ground plane, and its other sur-

faces being vertical. Otherwise, the shape does not mat-

ter. Fig. 6 shows half the cavity, with half the sample

in place, taking a rectangular block as sample. The

dimensions of the block are b – t, 2y, 211. It will be con-

venient to calculate the complex frequency shift for this

case; the extension to. the more general case follows

quite easily and will be discussed afterwards.

In Fig. 1, A B is a straight line parallel to QR, with

Q/t = RB = y. In Fig. 3, AB is a straight line parallel to

QR, with QA = RB =xK(l/a). From (43) and (44), to

the first order in x,

(53)

and so the line A B of Fig. 1 will map approximately to

the line A13 of Fig. 3, if ~ is very near to a. From Fig. 2,

@<1 and a> 1. Therefore ~ and a must both be very

close to 1, and only such values have been considered

in Figs. 4 and 5. In Fig. 3, the lines of force are parallel

to A B, and it is easy to calculate the perturbing effect

of a sample A BRQ; this we shall do shortly. If the

sample in the z plane had a curved side to fit the mapped

lines of force, the perturbing effect would be the same.

Since the sample sides are vertical, the perturbing effect

will be nearly the same, if the lines of force are nearly

vertical, i.e., if @/a is nearly 1. This imposes limits on the

values of t/b and w/b that may be chosen, if a given

accuracy is to be achieved. The error from this cause

depends only on a and ~, not on y or on the properties

of the sample. Thus it imposes limitations on the design

/’r7!”R’’”NG

Fig. &Placement of the sample for the dielectric-constant measure-
ment. Half the cavity is shown, the remainder being given by
reflection in the plane of section.

of the cavity only. Once the cavity has been made, no

improvement in accuracy beyond this point can be

achieved. The error due to this effect has been estimated

roughly, and the dashed curves in Figs. 4 and 5 indicate

its value for given values of a and ~, and hence of w/b

and t/b. For example , if w/b= 1 and t/b= 0.244, we

have a= 1.012(4), ~=0.9911, and the accuracy is about

1 per cent. This is a limiting figure for the cavity which

cannot be improved on by modifying the experimental

technique.

We shall now perform the perturbation calculation

using the first-order terms in x in (43) and (44) as was

done in (53). The terms in X3 will be required later to

estimate the error due to finite sample size. We start

from (45), where again V. means the volume of the

empty cavity, and now VI is the sample volume. The

sample illustrated in Fig. 6 is asymmetrically placed

with respect to the strip. If we consider a quarter of the

cavity, as we have been doing, the effect will be the

same as if there were two samples above and below the

strip. Since in fact there is only one, we must multiply

the right-hand side of (45) by one half. In the denom-

inator, the magnetic terms and electric terms make

equal contributions to the integral. In the numerator,

the magnetic terms vanish because the magnetic field

at the position of the sample is zero. Instead of l/Qo, we

shall now have the change of l/Q, i.e., l/Ql — l/Qo,

where Q. is the ‘f Q)’ in the absence of the sample and Q1

is the “Q” when the sample is introduced. Thus (45)

becomes

“[ 1
~+: ;–;
@

Sss{EI. DO – EOODI]W
v, N. ——. — .

Sss D
(54)

4 EO. D,dV
v~

Let us now consider the parallel-plate model of Fig. 3.

Then El= O because the field in the sample is Eo. For D1

we have

Do + D1 = eot(Eo + El) = COCEO,

“ D1 = eoeEo – Do = 60cE0 — 60E0,. .

i, e.,

DI = CO(6 – l)EO.

Eq. (54) becomes
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wtb

Fig. 7—The constant A of the frequency-shift formulas, as a function of zw/b, with t/b as parameter.

“[ 1

–(e – I) E”’v,
:+$; .; .—

+ .M?o’vo

where E02 means the value at the sample position, and

the factor 1/2 arises from the sinusoidal variation of

electric field along the cavity. Then

“[ 1

–(, – 1) X.211
~++;–; = ~ “y;”
u

We require the result in terms of y rather than x. Taking

y to be the mean of (53), and substituting for i from

(22), we obtain

where

n-a
A=

d

~’ – D’
(56)

2(a + p) K(l/a) aj—1

A is given graphically as a function of zo/b, with t/b as

a parameter, in Fig. 7. The real and imaginary parts

of (55) then give the real and imaginary parts of e in.,
terms of the frequency

tively.

It is evident that the

of a rectangular block,

shift and change of Q, respec-

sarnple need not be in the form

What is important is that its

height be equal to the separation between strip and

ground plane, and that its section perpendicular to this

dimension be constant. Then, for any other cross section

than the rectangular section we have been considering,

2yll is to be replaced by the half-area of the section. For

the same accuracy, the dimensions of the area of the

section must not exceed 2y or 211.

The accuracy of (55) depends on the assumption that

the field in which the sample is placed is uniform. Be-

cause it is not, the value of the numeratclr of the per-

turbation formula will be slightly less than the value we

have calculated. We consider separately tlhe errors due

to finite 11and finite y.

Because 11is finite, the field at the end of the sample,

which we have taken to be Eo, is in fact E(l cos (, where

.$= rI1/lO. The error is due to the difference between the

integral of Eo2 COS2 & over 11and the integra[ of 1302. Thus

the fractional error is found to be Tzllz/3102. [n perform-

ing an experiment, the sample must be designed so that

loo7r~l12
< tolerable percentage error

3102

or, if the error is to be less than ~ per cent,

1,/1, <0.05547 (57)

for a half-wave cavity. For a 10Ilger cavity,, replace 10 by

&/2 in this formula.

The limitation on y is due to the terms in X3 in (43)

and (44). For a thin layer of the sample near Q.4, the

energy distribution goes as E02 [1 –Kzxz(l –@2/a2) ]

instead of E02. On integrating over the range O to y, the

fractional error in the perturbation due tc, this element

is found to be, analogously to the above calculation for

the effect of finite L,
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~2y2(a2 _ p) 2

3b’(a! + p)’(a’ – 1)

Similarly, for an element near RB, the fractional error is

#y2(a2 _ @2)2

3aflb’(a + ,@’(a’ – 1) “

These expressions are nearly equal when a and O are

near to unity, and are then very small even for large

values of y/b. They are of opposite sign, so that these

errors tend to cancel, and the over-all fractional error is,

therefore, smaller than either of these expressions. It is

likely that a bigger error would be given by the term

in X5, for it seems reasonably certain that the error

should increase considerably as the sample enters into

the fringing fields. We therefore conclude, tentatively,

that for accurate results y4/b4<< 1. For 1 per cent ac-

curacy, this would allow y/b to be of the order of 0.3.

We expect that y/w would also be significant, but w

usually will not be much less than b, so that we may

equally well write y4/w4<<l.

V. MEASUREMENT OF MAGNETIC PROPERTIES

For these measurements, the ferrite sample is to be

placed at the end of the cavity, flush with the end wall.

We shall assume a single sample, i.e., on one side only

of the strip. The sample dimension parallel to the axis

of the cavity is 11, that perpendicular to the axis and

parallel to the plane of the strip is again 2y, and the

vertical dimension may be either b —t or a quantity s.

There are three cases. In all cases, the polarizing field is

vertical, i.e., perpendicular to the ground planes.

Case 1) The sample is a flat rectangular plate on the

end wall. The height is b —t, so that the ends are flush

with the ground plane and the strip, and ll<<y.

Case 2) The sample is a flat plate with its plane per-

pendicular to the end wall and to the strip. The height

is again b –t, and y<<l,, y<<(b –t).

Case 3) The sample is a flat plate lying on the strip,

with thickness s. We require S<<ll and s<<y.

The effect of placing the sample against the end wall

is to reflect it in the wall; this doubles the effective size

of the sample, but also doubles the effective size of the

cavity. Thus a half-wave cavity with a sample of length

11 against its end is, to the extent to which the end can

be regarded as perfectly conducting, equivalent to a full-

wave cavity with a sample of length 211 at its center.

For case 1) the external microwave magnetic field is

parallel to the plane of the plate and we

HO.BI – HI.BO = p@#(# – 1 – a’/p),

while for case 2) the microwave magnetic field is

perpendicular to the plane of the plate, and

H,cBl – HI*BO = pOH02(l – I/M),

For case 3), we find

Ho.Bl – H1.Bo = POH,2(W – 1).

We substitute into the perturbation formula and pro-

ceed as in Section IV. The results are:

Case 1)

“[ 1

;++ +_; =_ A(p_l–a2/p). ?!~lo . (58)

Case 2)

“[ 1
:+; ;–: =_ A(l_l/p).2& (59)

Case 3)

:++[;-+1=-B’’-’%(?3 “ “0)
Here A is the same constant as in (56) and is given by

Fig. 7. For case 3), the sample is close to RS of Fig. 1,

so we use the second of expressions (53) for the relation

between y and x, instead of the mean, Then

B = (1 + @/a)(A/2) (61)

and B can be obtained from the curve of Fig. 7 by evalu-

ating a and ~ from w/b and t/b with the aid of Figs. 4

and 5.

The limitations on y and 11 for a given desired ac-

curary are the same as in the dielectric case, so no

further discussion is necessary. The inherent error aris-

ing from the geometry of the cavity is also the same as

in the dielectric case, for cases 1) and 2), but does not

arise in case 3).

Samples may also be used in the form of plates which

may not be rectangular, and the frequency shift will be

proportional to the area, so that in case 1) the fre-

quency-shift formula is obtained by multiplying the

right-hand side of (58) by S/y(b — t) where S is the area

of the sample. For case 2), multiply the right-hand side

of (59) by S/ll(b —t), and for case 3) multiply the right-

hand side of (60) by S/yll. When these alterations are

made, the area S must lie within the limits for y and J]

if the same accuracy in the frequency-shift formula is

to be obtained. Also, the sample must still fit flush

against the end wall; the reason for this is discussed bY

Waldron.s

By making a measurement using case 1), and another

measurement using either case 2) or case 3), w and a can

be separately determined if required. The gyromagnetic-

resonance linewidth can be obtained from observations

of the change of Q, using any of cases 1), 2) and 3), for

the linewidth of l/Q can be shown to be equal to the

linewidth of the permeability in all three cases.

VI. SUMMARY .4ND DISCUSSION

Measurements of dielectric constants of samples in

the form of rectangular blocks can be made by placing

J R. A. Waldron, “Ferrites: An Introduction for Microwave En-
gineers, ” D. Van Nostrand Company, Princeton, N. J., pp. 119-121;
1961.
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the sample at the center of the cavity as shown in Fig. 6.

The relation between frequency shift and dielectric

constant is then given by (55), using the value of A ob-

tained from Fig. 7 or (56).

There is a limitation on the accuracy achievable with

a given cavity, due to the form of the fields near the axis.

This limiting accuracy is indicated in Figs. 4 and 5 by

the dashed curves. From these diagrams, the limiting

value of accuracy obtainable for given values of w/b and

t/b can be read off. When designing a cavity, this ques-

tion must be considered.

The accuracy of an experiment is also dependent on

the extent to which the assumption is valid that the

field in the neighborhood of the sample is uniform. If the

error due to the finite length 211 of the sample is not to

exceed ~ per cent, the limitation on 11 is given by (57).

It is dificult to estimate the error due to the finite value

of y, because, on expanding a certain expression as a

power series in y, the coefficient of the second term turns

out to be very small, so that it is likely that the error

due to the third term will be the significant one. This

suggests a tentative requirement that y4/b4 and y4/w4

be very small compared with unity.

It is not necessary that the horizontal section of the

sample be rectangular, as long as the sides are vertical

and the sample height is b —t. The area 4yll of the rect-

angular sample is then to be replaced by the area of the

sample actually being used. For the same accuracy as

with a rectangular sample, the greatest horizontal

dimensions should not exceed 2y and 211.

For measurements of the elements of the permeabil-

ity tensor of a ferrite, the sample should be in the form

of a thin flat rectangular plate. This may be placed with

its plane vertical, perpendicular to the end wall [case

2)]; or with its plane horizontal, against the live strip

[case 3)]. By making another measurement, with the

sample against the end wall [case 1)], both the diagonal

and the off-diagonal elements can be obtained. In case

2) and 3), one edge of the plate lies against the end

wall. The formulas for the freqency shifts are given in

(58)-(60). The same considerations of errors apply as

in the dielectric case, except that in case 3) there is no

inherent error in the cavity design because the sample

does not occupy the full height of the cavity.

In designing a cavity, the dimensions w, b, and thave

to be chosen to give suitable values of Q, of the constant

A of (55), and of the inherent error in the cavity due to

the finite departures of a and P from unity. These quan-

tities must be considered in relation to the values of the

properties to be measured, the accuracy desired, the

practical limitations there may be on the size of sample

that can be made, and the accuracy with which the fre-

quency shift and change of “Q” can be measured with

the gear available. The constant A can be read off from

Fig. 7. The “Q” of a cavity is given by (52).

SYAIBOLS

10= Length of the cavity.

b = Half the distance between the ground

planes.

t = Half the thickness of the live strip.

w = Half the width of the strip.

~, ~, h = Parameters used in the mapping, and

related to w, t,and b by (19-(22). See
also Figs. 4 and 5.

p’=~~.

y=til-1/a’.

F, H = Elliptical integrals of the first and

third kinds, respectively.

K = Complete elliptic integral of the first

kind.

23., DO, HO, BO = Fields and inductions in the cavity in

the unperturbed condition.

EI, DI, HI, B,= Fields and inductions which must be

added to Eo, DO, HO, and BO, to give the

fields and inductions in the cavity in

the perturbed condition.

cO, NO= Permittivity and permeability of free

space.

c = Dielectric constant of material under

test.

p, a = Diagonal and off-diagonal element of

relative permeability tensor of ferrite

under test.

u = Conductivity of the cavity walls.

~ = Skin depth of the material of the cav-

ity walls.

Q= Quality factor.

Q,= “Q” of the cavity in the absence of a

sample.

Q,= “Q” of the cavity when it: contains a

sample.

VO = Cavity volume.

VI= Volume over which a chilnge in prop-

erties is made, i.e., the whole of space

external to VO in Section 1[11, and the

sample volume in Sections IV and V.

u = 27r times resonance frequency of the

cavity.

ho= Free-space wavelength corresponding

to w.

x = The ratio of QA to Q&’ in Fig. 3.

y = Half the width of the sarnlple (parallel

to w).

11= Half the length of the sample for a

dielectric measurement, or the whole

length for a magnetic measurement

(parallel to 10).

s = Height of the sample in case 3 of the

magnetic measurement (parallel to b).

A = Numerical constant occurring in the

frequency-shift expressions,. It is given

by (56) and plotted in Fig 7.
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