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Theory of a Strip-Line Cavity for Measurement of
Dielectric Constants and Gyromagnetic-
Resonance Line-Widths*

R. A. WALDRON'}

Summary—The cavity consists of a half-wavelength or wave-
length of strip-line, short-circuited at both ends, and open along the
sides. For measurements of dielectric and magnetic properties of
samples, it has two apparent advantages over the more usual co-
axial line method: the sample is simpler in shape, and it can be in-
serted without dismantling the cavity. Perturbation formulas are ob-
tained for the frequency shift and change of “Q” on inserting a sam-
ple into a position of zero electric or zero magnetic field. The “Q” of
the cavity in the absence of a sample is calculated by a perturbation
method. The limiting sample size for a given accuracy to be obtained
is also discussed.

I. INTRODUCTION

N THE RANGE of frequencies from about 100

Mec to about 2000 Mc, the dielectric constants of

materials are usually measured by inserting into a
coaxial line a sample of the material in the form of a
tube, filling the space between the conductors.! Great
care is necessary in preparing a sample, for the shape is
complicated and the fit must be very good. This dif-
ficulty is accentuated if the material is available in the
form of a thin sheet from which a number of disks have
to be cut and stacked together. To insert the sample,
the circuit must be broken, and this introduces the
possibility of error because the junction at the break
may not be made in exactly the same way after the
break as before.

To overcome these difficulties, it was suggested? that
a strip-line resonator, short-circuited at both ends and
open along its sides, be used. Much simpler sample
shapes can then be used, and fewer dimensions need to
be accurately made to specified values. Also, the sample
can be inserted through the open side of the resonator
without otherwise disturbing the apparatus. The author
has made a study of the relevant theory which forms
the subject of the present paper.

By placing a sample in a region of zero magnetic
field and maximum electric field, a measurement of di-
electric constant can be made. For a cavity half a
wavelength long, such a position occurs at the center of
the cavity. Measurements of magnetic properties can
be made by placing the sample in a position of maxi-
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mum magnetic and zero electric field. For a half-wave-
length cavity, this is at the end of the cavity, and the
effect of reflection of the sample in the end wall must
be considered.

The field configuration in the cross section of a strip-
line is very complicated, and the problem cannot be
handled directly in terms of this model. To obtain the
problem in a tractable form, the actual strip-line cross
section must be mapped into a rectangle, two opposite
sides of which correspond to the live strip and one
ground plane. This parallel-plate model can then be
treated conveniently, and the results obtained for this
can be changed by means of the mapping function into
those proper to the actual strip-line. Thus the mapping
is central to the whole subject of the paper and will be
treated first, in Section II. The possibility of mapping
in this way depends on the fact that we take the strip-
line to be working in its transmission-line mode, in
which both the electric and magnetic fields are trans-
verse.

The imaginary part of a dielectric constant or
permeability is measured by observing the change of
“0” on inserting the sample. To ensure that meas-
urable values can be obtained, it is necessary to know
the “Q” of the unperturbed cavity, and this quantity
must be taken into account in designing a cavity. For
this reason, a calculation had been made of the “Q” in
Section 111, using perturbation theory.

Section IV deals with the frequency shift and change
of “Q” on inserting a dielectric material into a position
of zero magnetic field. This study falls into two parts,
the derivation of a formula for the frequency shift in
terms of the dielectric constant of the sample and the
geometry of the sample and cavity, and an estimate of
the maximum dimensions the sample may have if a
given accuracy is to be achieved.

The substances on which magnetic measurements will
be performed will usually be ferrites, and here the in-
terest is in the diagonal and off-diagonal elements of
the permeability tensor and the gyromagnetic-resonance
line-width. By placing the sample in different positions,
it is possible to measure both elements of the perme-
ability tensor. Only one measurement is necessary to
determine the linewidth.

At the center of the common area of two crossed
strip-lines, there will be circular polarization, and, by
reversing the sense of this, both permeability elements
may be measured on a sample placed at this position;
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this has been suggested by Ogasawara and Shikata.?
The difficulty here, however, is to relate the frequency
shift to the properties; this will be very difficult mathe-
matically—it is not a case of merely extending the
theory given in the present paper—and the problem is
not solved by Ogasawara and Shikata.

II. MAPPING

Fig. 1 shows the cross section of the strip-line. By
virtue of the two planes of symmetry, we need consider
in detail only one quadrant; the others will follow auto-
matically, We are concerned with the electric field dis-
tribution inside the polygon PQRSTP, where P is taken
to be at infinity. The ground planes will, of course, only
be of finite extent, but we assume this extent to be such
that, at the edges the energy density is so small that
the difference between the actual ground planes and
infinite ground planes is negligible.

The mapping is carried out in two stages. First we
shall map the polygon PQRSTP of Fig. 1 onto the first
quadrant of the { plane (Fig. 2) in such a way that the
periphery of the polygon in the z plane lies on the real
and imaginary axes in the { plane. The second stage is
to map the first quadrant of the { plane onto the in-
terior of a rectangle in the Z plane (Fig. 3). The two
transformations are to be carried out in such a way
that the two conducting surfaces are on opposite sides
of the rectangle in Fig. 3, and occupy the whole of each
side. The mapping function we shall use will be doubly
periodic in the Z plane, so that if the plane is imagined
to be filled with a doubly infinite number of rectangles
lying adjacent to one another, the mapping function we
shall use can, by suitably choosing certain arbitrary
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Fig. 1—Cross section of the strip-line.
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Fig. 2—Mapped form of Fig. 1 (intermediate stage).
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Fig. 3—The strip-line mapped onto a parallel-plate line.

be sufficient for our purpose to note the various forms
for points on the axes of the { plane, corresponding to
the perimeter of the polygon in the z plane.

On the line PQ, (1) becomes

g = jb + M (8Y/a)F($1,8) + (1 — B2/a®)IL(¢y, a2, B)} (2)

constants, be made to map any quadrant of the ¢ plane
onto any rectangle in the Z plane. The presence of these
alternative rectangles on either side of the one we are
concerned with means that the electric lines of force in
the Z plane do not go outside the rectangle; they are
straight, parallel to the imaginary axis—we have a
parallel-plate condenser with no edge effects. From our
knowledge of the field distribution in this simple situa-
tion, we can deduce certain facts we will need to know
about the field distribution in the z plane.

A. zto ¢ Mapping

The mapping function is

$ 1 1_52§72
R e
B o 1 — a%? 1 — ¢2 ¢ )

where 2, is a constant to be determined. This is a modi-
fied Schwarz-Christoffel transformation. Eq. (1) takes
different forms for different ranges of values of {. It will

#N. Ogasawara and Y. Shikata, “Improved permittivity and
rnggrQneabllity measurements,” Microwaves, vol. 1, pp. 20-23; October,

where F and II are incomplete elliptic integrals of the
first and third kinds, respectively, and sin ¢; =¢.
At Q,

=0, ¢1 =0, and 2z = jb. (3)
At P,
A T
¢=1/a and z:jb—l——oi1/a A )
o a? — 1

On the line PT, (1) becomes

A1 — g2 a? — @2
w -+ ( i)ﬂ(qﬁz, o ;[3> 3

2 =

az— C(Z— 1
where
sin g2 = /(1 — ¢3)/(1 — g%,
At P,
¢=1/a, and z:Z‘i az_’Bz. (6)
@ a? —1
At T,
¢ =1, ¢2=0, and z= w. (7)
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On the line TS, (1) becomes

= w— A {F<¢3, &)
a? _ BZ 1 — BZ
—_ II , 7
(e =28 ©
where

sin ¢3 = \/(1 - 1/5'2)/(1 - 52)1

and g8 = 1 — B2,

At T,
F=1, 63 =0, and z = w, 9)
At S,
§=1/ﬂ) ¢3=7r/27
and
0{2 — 62 1 —_— 62
=w — A K@) — I y B ). (10
e { R <1—a2 ﬁ)} (10
On the line SR, (1) becomes
z=jl+MF(95, ) — (1 = B/a)1i(s, B2, B)} (1)
where sin ¢, =1/4¢.
At S,
§=1/:87 ¢‘4=7r/27
and
2=+ MEK@) = (1 = g/a)(E/2, B}, (12)
At R,
= o, ¢4 =0, and 3z = ji. (13)
On the line RQ, (1) becomes
— ﬁZ
= b+ M Fon )
a? — 1
a? — 62
-1 - (b
o — 1
where
sin b5 = —\Z—t—?g“—; and again ﬁl = \/1 - 62.
At R! §‘=j°c1 ¢5=7T/2, and
—p
5 = jb +jx{ " K(g)
a? — 1
a2 -— 62
- - ). (19
a? — 1
At Q,
¢ = 40, ¢s = 0, and 3z = jb. (16)

The constants «, 8, and A can be obtained in terms of
the geometry of the strip-line, i.e., in terms of w, £, and 5.
At S,

2 = w+ ji. an
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At R,
z = ji. (18)
Comparing (10) and (17),
R = (=t A
Comparing (12) and (17),
w = MEK(@) — (1 — /e?)(B/a?, B} (20)

Comparing (15) and (18),
2 - 2
(520
a2 —1

1 —_— 2
{n( i ;a>+n<1 — ) — K(B’)}. (21)

1 — a?

It is convenient to deal with ¢/b and w/b rather than
with ¢ and w themselves. Curves of ¢/b and w/b as func-
tions of «, with 8 as a parameter, are given in Figs. 4
and 5. @ and B8 are numerical constants, but it is clear
from (21) that A will have the dimensions of . No ad-
vantage is to be obtained by normalizing b, e.g., with
respect to the free-space wavelength, so we will retain b
as a length. Eq. (21) simplifies to

2a0b o — 1

I Ty 22
B. {to Z Mapping
The mapping function is
Z=Z0+Lfr % - (29
o VI =1 —a¥?

This is again a modified Schwarz-Christoffel transfor-
mation. As before, this function takes different forms for
different ranges of values of {. Again, we only need con-
sider the periphery of the rectangle in the Z plane.

On the line QP, (23) becomes

Z=K(/a) + —i— F(61, 1/a) (24)
where
sin 6;=of.
At Q,
¢=0, 6,=0, and Z = K(l/a). (25)
At P,
¢=1/a, 6 ==/2, and Z = K(1/a)[1 + L/a]. (26)
But at P,

Z=0. (27

L= —a.

This value of L will be taken in future, so that L will
not appear again explicitly.
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Fig. 4—t/b as a function of «, with 8 as a parameter. 8 is the
sine of the angle given,
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Fig. 5—w/b as a function of «, with 8 as a parameter. 8 is the
sine of the angle given.

On the line PT), using also (27), (23) becomes

Z = jF (62 v) (28)
where
sin 0, 4/ ik S S S 1742
§He? — 1)
At P,
{=1/a, 6. =0, and Z = 0. (29)
At T,
F=1, 6, = w/2, and Z = jK(v). (30)
On the line TR, using also (27), (23) becomes
Z =jK() + K(1/a) — F(6s, 1/) €29
where
sin 8; =1/¢.
At T,
¢ =1, 0: = w/2, and Z = jK(y). (32)
At S,
{=1/8, and
Z =jK(v) + K(1/a) — F(Sin™' 8, 1/a).  (33)
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At R,
=, 6;,=0, and Z=jK(y)+ K(1/a). (34)
On the line RQ, using also (27), (23) becomes
Z = K(1/a) + jF(bs, v) (35)
where
sin 4, = ————L and again ¥ = V1 — 1/a2
V1= ok
At R,
=7, 04=x/2, and Z = K(1/a)+ jK(v). (36)
At Q,
¢ = 40, 0, =0, and Z = K(1/a). 37

C. Form of the Field Near RQ

We shall be particularly interested in the lines of force
near RQ, because it is into this region that the sample
will be introduced. First, we note that for sufficiently
small 8 and

F(8, k) = 6 + k%63/6, (38)
e, x, k) =0+ (2x* + %26%/6, (39)
Sin™t % = u 4 43/6. (40)

Now consider in Fig. 3 the line 4B drawn parallel to
QR, so that QA/QP=x. This line coincides with a
line of electric force, and we wish to know where the
points 4 and B will lie in the z plane. At 4, we have,
from the values given in Section 11-B for Z at P and Q,

Z=K\1/a)[1 — x]
and from (24), using (27) and (38),
Z~K(1/a) — (81 + 6,3/6a?).
Comparing these,
0122 xK(1/a)[1 — x2K2/6a?]

where K means K(1/ea). Now, on Sin §;=a{, and we
write {4 for the value of { for the point A. Hence

1
¢4 = —Sin { Kx(1 — K22/6a?)}. (41)
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Similarly, at B, using (31) and (38),
1
{p = . (42)

~ Sin {Kx(l — K2x2/6a2)}

Eqgs. (41) and (42) give the points in the { plane onto
which 4 and B map. We do not need to know the de-
tailed form of the curve joining them into which the
line A B of Fig. 3 maps.

We are now going to map the points 4 and B onto the
z plane. For the point 4, using (40), we write

122 Sin7! ¢4 = Ea + $4%/6
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and using (38) and (39), (2) then becomes
24 = b + Mo + (1 + 202 — 82)¢48/6}.

Using (41) and expanding the sine in terms of the angle,

this becomes
AKx K2x?
fie=2a- /et
a 6

24 = jb + (43)

Similarly,

_ ABKx K22
zp = Jt - Z {1 — (a2/B% — 1)}. (44)

o 6a?

Eqgs. (43) and (44) are the required expressions for the
positions of 4 and B in the z plane. They will be dis-
cussed further in Section IV.

I1I. Q oF THE CAVITY

The “Q” can be calculated by the use of perturbation
theory. For a cavity with perfectly conducting walls
filled with a lossless dielectric (e.g., vacuum), the “Q”
is infinite, and 1/Q=0. The change in 1/Q on perturb-
ing this ideal cavity to the actual cavity gives the “Q”
of the cavity. It will be legitimate to assume the dielec-
tric filling, which will be air, to be lossless. The finite
value of the “Q” will then be due to the replacement of
perfectly conducting walls by metal walls.

The perturbation formula is*

dw F
w 2Qo
N

D
JI] j&Dmzp)-tnmmar

fff { Eo» Dy— Hy- Bo} dV

where Eo, Do, Hy, and B, are the fields and inductions
in the unperturbed state and Ei, Dy, Hi, and B; are
additional fields and inductions which, added to E,, Dy,
H,, and B,, give the fields and inductions in the per-
turbed cavity. By virtue of the symmetry of the figure
in the 2z plane, we need consider only the cavity consist-
ing of the polygon PQRSTP with length I, perpendicu-
lar to this polygon. The interior of this is the volume V,.
The volume Vi is the whole of the volume over which
perfect conductor is replaced by metal. It will be con-
venient to perform the calculation for the mapped form
of the cavity in Fig. 3 instead of the more complicated
form of Fig. 1.

In Vi, Ey=0and By=0. The numerator of (45) there-
fore reduces to

N=fffV{E1-Do+Ho-B1}dV

* R. A, Waldron, “Perturbation Theory of Resonant Cavities,”
IEE Monograph, No. 373E; April, 1960,

(45)

(46)
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and there will be two parts to this: Ny due to the length
of the stripline and N, due to the short-circuiting plates.
For N, we note that, at the metallic surface, Dy is
equal to Dgy=e€oEo, and that Dy is also equal to
€e(E+ Eq1), where the second subscripts 0 and 1 refer
to values in V, and V7, respectively. Ey is zero. Thus
in Vi, Ei-Dy=¢€Ego%/. Also, at the metallic surface
By = uoHyo, since a medium of permeability 0 has been
replaced by a medium of permeability 1. Hence

Ey-Do+ Ho By = = Eog’ + oo’ (47)
at the surface. Here € is the dielectric constant of the
metal, which is very large and imaginary. Since €yEp?
=uoH?, this makes the first term on the right-hand
side very much less than the second. Thus the term in
E? may be dropped.

For the term Hy-B; in Vi, we have H, constant over
the transverse plane and equal to the value in Vy, be-
cause, in the perfect conductor, Hy extends to infinity.
However, B, decays exponentially in the metal because
of the skin effect. The value of uoHqe® in (47) must there-
fore be multiplied by the factor exp {-(1-+7)y/8},
where v is the distance measured upwards from 7'R or
downwards from PQ in Fig. 3, and 8 is the skin depth.
We have now evaluated the integrand of (46) for Ni.
Performing the integration, we obtain

N1 = (1 — {)éueHoly- PQ (48)

where [, is the length of the cavity and Hyg is the RMS
value of the magnetic field averaged, that is, over the
cavity length, because the field varies cosinusoidally
with length,

For the contribution from the ends, we note that at
the ends Dy=E,=0. The contribution is again due to
the magnetic field parallel to the surface, so that

N» 4-PQ-QR  2-0OR
Ni  2:PQ-ly I

(49)

The factor 4 in the numerator arises as the product of
two factors 2, one for the two ends and one because at
the ends of the cavity H, has its peak value, whereas,
along the length, we took the RMS value. The factor
QR/l, is the ratio of the area of the end-plate to that of
one of the lengthwise conducting planes in Fig. 3. The
factor 2 in the denominator exists because there are two
such planes in which dissipation is taking place.

From (48) and (49),
N = (1 — HsucHoo- PQ[1 + 20R/l0]. (50)

For the denominator of (45), we note that

Vo Vo

and hence

D = — fo H()BodV = - 2};017021/7
Vo



128

1.€.,
D = — 2uH*- PQ-QR-1, (51)

where again Hj is the RMS field. From (50) and (51),
we obtain

N _ ow 7 _ G—1s

7% -Z_Q_o—_——ZQR [1 4 20R/1),
o OR
Q= 8[1 -+ 20R/l]

Mapping back onto the z plane, we find that § maps to 6
and QR to b—¢. Writing also

Ao
1200

1
§=—
m

where A is the free-space wavelength and o is the con-
ductivity of the metal, we finally obtain

_ 7(b — £)/120c ‘
T Ve 14 200 — £)/1o}

For example, if ¢=6.107, which is about the value for
silver, b=1/4", t=1/16", A¢=1 meter, and /=350 cm,
Qo is found to be 1220.

Qo (52)

IV. MEASUREMENT OF DIELECTRIC CONSTANT

For this purpose, the sample is to be taken as a small
block of height b—¢, its horizontal surfaces fitting flush
with the strip and the ground plane, and its other sur-
faces being vertical. Otherwise, the shape does not mat-
ter. Fig. 6 shows half the cavity, with half the sample
in place, taking a rectangular block as sample. The
dimensions of the block are b—¢, 2y, 2/;. It will be con-
venient to calculate the complex frequency shift for this
case; the extension to.the more general case follows
quite easily and will be discussed afterwards.

In Fig. 1, AB is a straight line parallel to QR, with
QA =RB=y. In Fig. 3, AB is a straight line parallel to
QR, with QA =RB=xK(1/a). From (43) and (44), to
the first order in x, ‘

AKx ~ MK x

y -~
o a?

(53)

and so the line 4 B of Fig. 1 will map approximately to
the line A B of Fig. 3, if 8 is very near to a. From Fig. 2,
B<1 and a>1. Therefore 8 and « must both be very
close to 1, and only such values have been considered
in Figs. 4 and 5. In Fig. 3, the lines of force are parallel
to AB, and it is easy to calculate the perturbing effect
of a sample ABRQ; this we shall do shortly. If the
sample in the 2 plane had a curved side to fit the mapped
lines of force, the perturbing effect would be the same.
Since the sample sides are vertical, the perturbing effect
will be nearly the same, if the lines of force are nearly
vertical, 7.e., if 8/ais nearly 1. This imposes limits on the
values of /b and w/b that may be chosen, if a given
accuracy is to be achieved. The error from this cause
depends only on a and 8, not on y or on the properties
of the sample. Thus it imposes limitations on the design
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Fig. 6—Placement of the sample for the dielectric-constant measure-
ment. Half the cavity is shown, the remainder being given by
reflection in the plane of section.

of the cavity only. Once the cavity has been made, no
improvement in accuracy beyond this point can be
achieved. The error due to this effect has been estimated
roughly, and the dashed curves in Figs. 4 and 5 indicate
its value for given values of @ and 8, and hence of w/b
and #/b. For example, if w/b=1 and ¢/b=0.244, we
have «=1.012(4), $=0.9911, and the accuracy is about
1 per cent. This is a limiting figure for the cavity which
cannot be improved on by modifying the experimental
technique.

We shall now perform the perturbation calculation
using the first-order terms in x in (43) and (44) as was
done in (53). The terms in x? will be required later to
estimate the error due to finite sample size. We start
from (45), where again Vy means the volume of the
empty cavity, and now V; is the sample volume. The
sample illustrated in Fig. 6 is asymmetrically placed
with respect to the strip. If we consider a quarter of the
cavity, as we have been doing, the effect will be the
same as if there were two samples above and below the
strip. Since in fact there is only one, we must multiply
the right-hand side of (45) by one half. In the denom-
inator, the magnetic terms and electric terms make
equal contributions to the integral. In the numerator,
the magnetic terms vanish because the magnetic field
at the position of the sample is zero. Instead of 1/Q,, we
shall now have the change of 1/Q, i.e., 1/01—1/Q,,
where (g is the “Q” in the absence of the sample and Q;
is the “Q” when the sample is introduced. Thus (45)
becomes

§+_f_[i_i]
w 2 L0, Qo
fffV{El-Do—Eo-Dl}dV
4 f f B Dy

Let us now consider the parallel-plate model of Fig. 3.
Then E; =0 because the field in the sample is Ey. For D,
we have

Do + D1 = Eof(Eo + El) = EoEEo,
. D) = eeEy — Dy = eeEy — eoEo,

_x 54
=" (54)

i. €.,

D1 = 60(6 —_ 1)E0
Eq. (54) becomes
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Fig. 7—The constant 4 of the frequency-shift formulas, as a function of w/b, with ¢/b as parameter.
dw 4 [ 1 1 :l B —(e — D) Eg*V, 2vl, is to be replaced by the half-area of the section. For
© 20, Qo L AE2V, the same accuracy, the dimensions of the area of the

where Eq? means the value at the sample position, and
the factor 1/2 arises from the sinusoidal variation of
electric field along the cavity. Then

o 7 [1 lil —(e—1) x-2,

W 2 Ql Q()

We require the result in terms of y rather than x. Taking

v to be the mean of (53), and substituting for X from
(22), we obtain

@ 2 lo

dw irt 1 2914
—_t === — d(e = 1) — 55
w Z[Ql Q(J Al =D &9
where
4 = To i at — 2 ‘ (56)
2(a + B K(1/a) a? — 1

A is given graphically as a function of w/b, with £/b as
a parameter, in Fig. 7. The real and imaginary parts
of (55) then give the real and imaginary parts of € in
terms of the frequency shift and change of Q, respec-
tively.

It is evident that the sample need not be in the form
of a rectangular block. What is important is that its
height be equal to the separation between strip and
ground plane, and that its section perpendicular to this
dimension be constant. Then, for any other cross section
than the rectangular section we have been considering,

section must not exceed 2y or 2/;.

The accuracy of (55) depends on the assumption that
the field in which the sample is placed is uniform. Be-
cause it is not, the value of the numerator of the per-
turbation formula will be slightly less than the value we
have calculated. We consider separately the errors due
to finite /y and finite y.

Because /; is finite, the field at the end of the sample,
which we have taken to be E,, is in fact Eg cos &, where
¢=wl/ly. The error is due to the difference between the
integral of Ey® cos? £ over /s and the integral of I£¢% Thus
the fractional error is found to be 7%2/3/%. In perform-
ing an experiment, the sample must be designed so that

10072
314*

or, if the error is to be less than f per cent,

1./l < 0-055+/f (57)

for a half-wave cavity. For a longer cavity, replace /o by
Ao/2 in this formula.

The limitation on ¥ is due to the terms in x% in (43)
and (44). For a thin layer of the sample near Q4, the
energy distribution goes as E¢[1—K2e2(1—3%/a?)]
instead of Ey% On integrating over the range 0 to y, the
fractional error in the perturbation due to this element
is found to be, analogously to the above calculation for
the effect of finite /i,

< tolerable percentage error
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w292 (a? — B2)?
302 (a+ B)2(a? — 1)

Similarly, for an element near RB, the fractional error is

w2y%(a? — B2)2 .
3aBb* (o + B)*(e* — 1)

These expressions are nearly equal when « and 8 are
near to unity, and are then very small even for large
values of y/b. They are of opposite sign, so that these
errors tend to cancel, and the over-all fractional error is,
therefore, smaller than either of these expressions. It is
likely that a bigger error would be given by the term
in x5, for it seems reasonably certain that the error
should increase considerably as the sample enters into
the fringing fields. We therefore conclude, tentatively,
that for accurate results y*/6'1. For 1 per cent ac-
curacy, this would allow y/b to be of the order of 0.3.
We expect that y/w would also be significant, but w
usually will not be much less than b, so that we may
equally well write y*/w!«<1.

V. MEASUREMENT OF MAGNETIC PROPERTIES

For these measurements, the ferrite sample is to be
placed at the end of the cavity, flush with the end wall.
We shall assume a single sample, 7.e., on one side only
of the strip. The sample dimension parallel to the axis
of the cavity is /;, that perpendicular to the axis and
parallel to the plane of the strip is again 2y, and the
vertical dimension may be either b—¢ or a quantity s.
There are three cases. In all cases, the polarizing field is
vertical, 7.e., perpendicular to the ground planes.

Case 1) The sample is a flat rectangular plate on the
end wall. The height is b —¢, so that the ends are flush
with the ground plane and the strip, and /;<<y.

Case 2) The sample is a flat plate with its plane per-
pendicular to the end wall and to the strip. The height
is again b—t, and y<i;, v<<(b—1%).

Case 3) The sample is a flat plate lying on the strip,
with thickness s. We require s</; and s<<y.

The effect of placing the sample against the end wall
is to reflect it in the wall; this doubles the effective size
of the sample, but also doubles the effective size of the
cavity. Thus a half-wave cavity with a sample of length
/1 against its end is, to the extent to which the end can
be regarded as perfectly conducting, equivalent to a full-
wave cavity with a sample of length 2/; at its center.

For case 1) the external microwave magnetic field is
parallel to the plane of the plate and we

Hy-B, — H{B, = IJ'OHOQ(/J' —-1- 042/#),

while for case 2) the microwave magnetic field is
perpendicular to the plane of the plate, and

Ho‘B1 - Hl'Bo = M0H02(1 - 1/#).

For case 3), we find

Ho'Bl — Hl'Bo = ,bLoHoZOJ — 1)
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We substitute into the perturbation formula and pro-
ceed as in Section 1V. The results are:

Case 1)

dw ] 1 1 _ . 2 y_ll
ZJT[Q—@]_ A= 1=/ Y
Case 2)

| 1} yh

DO TR R RN 1 — L.

w + 2 {Ql Qo A€ 1w blo )
Case 3)

o f JTL AN g b

- +E[@I _éﬂ STy @

Here A4 is the same constant as in (56) and is given by
Fig. 7. For case 3), the sample is close to RS of Fig. 1,
so we use the second of expressions (53) for the relation
between y and x, instead of the mean. Then

B =1+ 8/a)(4/2) (61)

and B can be obtained from the curve of Fig. 7 by evalu-
ating « and 8 from w/b and ¢/b with the aid of Figs. 4
and 5.

The limitations on y and /; for a given desired ac-
curary are the same as in the dielectric case, so no
further discussion is necessary. The inherent error aris-
ing from the geometry of the cavity is also the same as
in the dielectric case, for cases 1) and 2), but does not
arise in case 3).

Samples may also be used in the form of plates which
may not be rectangular, and the frequency shift will be
proportional to the area, so that in case 1) the fre-
quency-shift formula is obtained by multiplying the
right-hand side of (58) by S/y(b—t) where S is the area
of the sample. For case 2), multiply the right-hand side
of (59) by S/l(b—t), and for case 3) multiply the right-
hand side of (60) by S/vl;. When these alterations are
made, the area .S must lie within the limits for y and /,
if the same accuracy in the frequency-shift formula is
to be obtained. Also, the sample must still fit flush
against the end wall; the reason for this is discussed by
Waldron.5

By making a measurement using case 1), and another
measurement using either case 2) or case 3), u and « can
be separately determined if required. The gyromagnetic-
resonance linewidth can be obtained from observations
of the change of Q, using any of cases 1), 2) and 3), for
the linewidth of 1/Q can be shown to be equal to the
linewidth of the permeability in all three cases.

VI. SuMMARY AND DiscuUssioN

Measurements of dielectric constants of samples in
the form of rectangular blocks can be made by placing

5 R. A. Waldron, “Ferrites: An Introduction for Microwave En-
gigr%eers,” D. Van Nostrand Company, Princeton, N. J., pp. 119-121;
1961.
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the sample at the center of the cavity as shown in Fig. 6.
The relation between frequency shift and dielectric
constant is then given by (55), using the value of 4 ob-
tained {from Fig. 7 or (56).

There is a limitation on the accuracy achievable with
a given cavity, due to the form of the fields near the axis.
This limiting accuracy is indicated in Figs. 4 and 5 by
the dashed curves. From these diagrams, the limiting
value of accuracy obtainable for given values of w/b and
/b can be read off. When designing a cavity, this ques-
tion must be considered.

The accuracy of an experiment is also dependent on
the extent to which the assumption is valid that the
field in the neighborhood of the sample is uniform. If the
error due to the finite length 2/; of the sample is not to
exceed f per cent, the limitation on /; is given by (57).
It is difficult to estimate the error due to the finite value
of ¥, because, on expanding a certain expression as a
power series in y, the coefficient of the second term turns
out to be very small, so that it is likely that the error
due to the third term will be the significant one. This
suggests a tentative requirement that y*/b* and y*/w*
be very small compared with unity.

It is not necessary that the horizontal section of the
sample be rectangular, as long as the sides are vertical
and the sample height is b—¢. The area 4v/; of the rect-
angular sample is then to be replaced by the area of the
sample actually being used. For the same accuracy as
with a rectangular sample, the greatest horizontal
dimensions should not exceed 2y and 2/.

For measurements of the elements of the permeabil-
ity tensor of a ferrite, the sample should be in the form
of a thin flat rectangular plate. This may be placed with
its plane vertical, perpendicular to the end wall [case
2)]; or with its plane horizontal, against the live strip
[case 3)]. By making another measurement, with the
sample against the end wall [case 1) ], both the diagonal
and the off-diagonal elements can be obtained. In case
2) and 3), one edge of the plate lies against the end
wall. The formulas for the freqency shifts are given in
(58)—(60). The same considerations of errors apply as
in the dielectric case, except that in case 3) there is no
inherent error in the cavity design because the sample
does not occupy the full height of the cavity.

In designing a cavity, the dimensions w, b, and ¢ have
to be chosen to give suitable values of Q, of the constant
A of (55), and of the inherent error in the cavity due to
the finite departures of @ and 8 from unity. These quan-
tities must be considered in relation to the values of the
properties to be measured, the accuracy desired, the
practical limitations there may be on the size of sample
that can be made, and the accuracy with which the fre-
quency shift and change of “Q” can be measured with
the gear available. The constant 4 can be read off from
Fig. 7. The “Q” of a cavity is given by (52).

SYMBOLS

lo=Length of the cavity.
b=Half the distance between the ground
planes.
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t=Half the thickness of the live strip.
w=Half the width of the strip.
«, B, A\=Parameters used in the mapping, and
related to w, ¢, and & by (19)—(22). See
also Figs. 4 and 5.

B =~+1-p~

Y=vV1-1/a%

F, I=Elliptical integrals of the first and
third kinds, respectively.

K =Complete elliptic integral of the first
kind.

Ey, Dy, H),, By=Fields and inductions in the cavity in
the unperturbed condition,

E,, Dy, H,, B,=TFields and inductions which must be
added to Eo, Dy, Hy, and B,, to give the
fields and inductions in the cavity in
the perturbed condition.

€, o= Permittivity and permeability of free
space.

¢= Dielectric constant of material under
test.

u, o= Diagonal and off-diagonal element of
relative permeability tensor of ferrite
under test.

o= Conductivity of the cavity walls.

6 =Skin depth of the material of the cav-
ity walls.

Q=0Quality factor.

Qo="“Q” of the cavity in the absence of a
sample.

01=%Q” of the cavity when it contains a
sample.

V= Cavity volume.

Vi=Volume over which a change in prop-
erties is made, 1.e., the whole of space
external to 7y in Section III, and the
sample volume in Sections IV and V.

w=2m times resonance frequency of the
cavity.

No=Free-space wavelength corresponding
to w.

x=The ratio of Q4 to QP in Fig. 3.

y=Half the width of the sample (parallel
to w).

l;=Half the length of the sample for a
dielectric measurement, or the whole
length for a magnetic measurement
(parallel to lo).

s=Height of the sample in case 3 of the
magnetic measurement (parallel to ).

A =Numerical constant occurring in the

frequency-shift expressions. It is given
by (56) and plotted in Fig. 7.
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